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ABSTRACT 

 

A 2DH mathematical model assembled at CEHIDRO, IST, is employed to model 

2000/2001 Tagus river floods over a 70 km reach, with the key objective to assess its 

performance envisaging its use as a forecasting tool. The model is suited for highly uns-

teady discontinuous flows over complex geometries, employing a finite-volume discre-

tization scheme, based on a flux-splitting technique incorporating a reviewed version of 

the Roe Riemann solver. New boundary conditions were developed, based in the Rie-

mann invariant, in order to cope with the provided hydrographs in a mathematically 

coherent manner. Detailed discharges and water levels are available for the inlet and 

outlet sections, as well as for the inlet at river Zêzere, a Tagus affluent. A high resolu-

tion Digital Elevation Model (DEM) is used. Spatially heterogeneous roughness charac-

teristics are derived from land-use databases built from satellite data. 

Synthetic Aperture Radar (SAR) satellite imagery of the floods is available and is used 

to validate the simulation results. The delimited areas from the satellite and simulations 

are over imposed and show a very good agreement in all major flood extents, with small 

structures, with lengths at the order of the spatial discretization, clearly reproduced. 

Flow depths and registered discharges are recovered from the simulation and compared 

with data from a measuring station in the domain. The comparison shows remarkably 

high accuracy, both in terms of amplitudes and phase. Further calibration of the rough-

ness parameters and inclusion of detailed terrain structures like small levees should im-

prove the flood extents regarding the comparisons with satellite data.  
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1. Introduction 

 

Flood events may have an important 

impact on human societies due to their 

considerable destructive potential. The 

existence of communities in flood 

plains, due to advantageous natural 

conditions, increases the risk dramati-

cally. Flood mitigation is, therefore, an 

extremely important investment but also 

a complex task that no single measure 

can tackle. As such, extensive knowled-

ge of the flood temporal and spatial 

extensions are of superior importance to 

derive an array of solutions aiming to 

mitigate the risk of such events. 

Flood modeling can contribute to a res-

ponse to such requests, in the sense that 

reach scale flood events can be modeled 

and the desired information collected at 

a very low cost. Such endeavor requi-

res, from the numerical model, the abi-

lity to consider unsteady flows over 

complex topography. Two-dimensional 

depth-averaged (2DH) models have 
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been extensively described in the engi-

neering literature but there are, howe-

ver, some open topics on how to deal 

with difficulties that natural channel 

geometries pose. Nonetheless, several 

models are used and continue to be de-

veloped and calibrated (Bates et al, 

1998; Horritt, 2000; Hall et al, 2011). 

2DH models are usually regarded as 

tools to more detailed studies of short 

reaches and small duration events. Ho-

wever, relevant speed-ups resorting to 

code parallelization, taking advantage 

of multi-core processors or dedicated 

accelerators, mesoscale simulations 

resolved to the reach scale, spanning 

several days or weeks periods are now 

feasible. 

This works is an application of the 

Strong Transients in Alluvial Valleys 

2D (STAV2D) code, a model that relies 

on a Finite-Volume Method (FVM) 

discretization (LeVeque, 2002). It em-

ploys a technique first presented by Mu-

rillo & García-Navarro (2010), where 

the discretization of the non-

homogenous terms of hyperbolic 

systems of conservation laws is made in 

ways compatible with steady solutions, 

such as still water in hydrostatic equili-

brium or steady flows in complex, natu-

ral bed geometries. Bed slope source 

terms are of special importance in this 

case and for that reason considerable 

effort has been devoted to the topic of 

correctly including them in the scheme, 

preserving the properties of the homo-

geneous equations. 

The Tagus case-study represents a cha-

llenge due to the geometry and dimen-

sion of the reach under consideration, as 

well as the combination of flood plains 

and steep terrain in the DEM and the 

duration of the events.  

The objective of this work is to model 

historic events on the considered do-

main using the STAV2D model, in an 

attempt to assess the possibility of its 

employment as a forecasting tool. Two 

concerns arise considering the base data 

that the model uses: the quality of the 

geometry and the roughness parameters. 

The DEM must be sufficiently similar 

to the current geometry, a difficult re-

quirement considering the intensity of 

geomorphic activity in river systems. 

The roughness estimates, derived from 

crossing data from the literature (Mat-

tocks, 2006; Chow, 1959; Kalyanapu, 

2009) and the CORINE Land Cover 

Project data, are given for uniform 

flows and very different values can be 

assigned to similar areas while maintai-

ning consistency with the literature.  

The novelty of the work arises from the 

boundary conditions, derived as to 

allow for complex, regime changing 

scenarios, the size and resolution of the 

simulation and the usage of satellite 

imagery to provide cues regarding the 

simulation results. 

 

 

2. Conservation Equations and 

Closure Models 

 

The application of the Reynolds 

Transport Theorem (RTT) to the 

quantities total mass and momentum in 

both directions yields  
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(3) 

 

where h is the fluid height above the 

bed elevation, g is the acceleration due 

to gravity, u and v are the depth-

averaged velocities in the x and y direc-

tions, respectively and Zb is the bed ele-

vation. In equations (2) and (3), ρ is the 
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density,  ( )
ix b
Z  represents the bottom 

slope contribution for the momentum, 

and τb,i is the bed shear stress.  

The bed shear stress, τb is such that 

  2| | | |
f
C

b
τ u  (4) 

 

and the friction coefficient, Cf, in order 

to reproduce the Manning-Stricler for-

mula, is expressed as  2 1/3/
f s
C g K h , 

where Ks is the Strickler parameter, the 

inverse of the Manning coefficient. 

 

 

3. Discretization Scheme  
 

The set of conservation laws (1) to (3) 

configures a 1
st
 order hyperbolic, non-

homogeneous, quasi-linear system of 

partial differential equations that can be 

written in compact vectorial notation as  
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where    
T

h u vV  and    
T

h uh vhU are 

the vectors of primitive and conserva-

tive variables, respectively,     ·
x y

E F G is given 

by     ·
x y
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2 21 / 2vh vuh v h ghG  are the flux vec-

tors,      
 

T

0
x b y b

gh Z gh ZR  is the vec-

tor of non-conservative fluxes and 

       
 

T

/ /
t b x y
ZT is a source vec-

tor. 

To obtain the Finite Volume (FV) dis-

cretization, system (5) is integrated in a 

cell I . The Gauss theorem is applied to 

the divergence terms resulting in 
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where 
I
A  is the area of cell I , 

KI
L  is the 

length of edge K  of cell I , 
I

N  is the 

number of edges of cell(  3
I
N in this 

case) I , 
IK

represents the variation 

across the thK  edge of cell I  and 

 ( , )T
IK x y

n nn  is the outward unit normal 

vector to each K edge of the cell I . 

Operator  represents the spatial 

average over the cell area. The flux 

variation across the thK  edge of cell I , 

    ·
IK IK
E R n , is expressed as a function 

of the local variation of the dependent 

conservative variables, using Roe's 

approximate Riemann solvers (Roe, 

1981). Note that the flux vector of a 

system of shallow-flow conservation 

laws is not homogeneous and, hence, it 

is not possible to perform an exact flux 

vector splitting. Assuming a local 

linearization of the flux vectors 

orthogonal to an edge, one obtains 
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(Toro, 2001; Murillo & García-Navarro, 

2010), where  ( )m

IK
 are the wave-

strengths for each of the eigenvectors 

( )m

IK
e
~

 and 
~ ( )m

IK  are the respective eigen-

values. The expressions of the wave-

strengths, eigenvectors and eigenvalues 

are well known and can be consulted in 

Toro (2001), among others.  ( )m

IK
follows 

an expression that guarantees a well-

balanced scheme and correct energy 

dissipation at jumps, derived by Murillo 

& García-Navarro (2010). The remain-

ing source term, T , is discretized in a 

point-wise, semi-implicit manner as 
   1( ) n

I I
t tT T . It is computed in an in-

termediate step with the updated vari-

ables of the homogeneous part of equa-

tion (6). Bed shear stress is simply 

taken as(4). Introducing equations (7) 

into (6), this Godunov-type flux-

splitting FV scheme can be summarized 

as  



Canelas et al., ACT 5, 1-9, 2014 

 

 

4 

 

 

  





 



 

 
   

 
 



 

1

( ) ( )3 3
( ) ( )

1 1

1 ,

n n

I I

m m

m m
IKIK

K mI IK

n

I

t
L

A

t

U U

e

T

~ ~

 

 

 

(8) 

 

where only the negative part of the ei-

genvalues 
( )m

IK

~

 and of the wave-

strengths  ( )m

IK
 and  ( )m

IK
 are used, ensur-

ing that only in-coming fluxes are con-

sidered in the update of the conserved 

variables. 

When cell-averaging the solution, the 

time step is chosen small enough to 

guarantee that there is no interaction 

between waves obtained as the solution 

of the Riemann Problem (RP) at 

adjacent cells. The stability region 

considering the homogeneous part of 

the system resembles a traditional CFL 

condition, with added terms arising 

from the non-homogenous part (Murillo 

& García-Navarro, 2010). Wetting and 

drying algorithms, as well as the 

necessary entropy corrections in order 

to ensure that physical solutions are 

always attained in critical flow points 

are also drawn from (Murillo & García-

Navarro, 2010). 

 

3.1. Inlet/Outlet Boundary Conditions 

for River Modeling 

1D information (discharge or level) 

must be transformed into 2D informa-

tion (fluid height and velocity field) at 

the open boundaries. The characteristics 

method, employing the Riemann Invari-

ant, is used on each edge associated to 

the characteristic line that leaves the 

domain at that edge identified as a per-

missive boundary. For the inlet case, 

assuming a frictionless bed, the Riem-

man Invariant can be written as 
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where 
,KI g

q  is the discharge associated 

with the boundary K edge of element 

,I g  and 
LI
L  is the respective length. As-

suming that  2/3u h  allows for the writ-

ing of 
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where 
in
Q  is the total discharge. The 

solution algorithm consists of splitting 

in
Q  into a series of 

,KI g
q  according to the 

cell fluid height, solving (9) in every 

inlet edge, finding a h distribution, and 

iteratively solve the new inlet level, 

taken as the average of the fluid levels 

of every wet cell. Once the new wet 

section is defined, (10) is solved in or-

der to   and the velocity field (only 

existing in the normal to the inlet sec-

tion) is imposed in the ghost cells. 

These cells are then used in equation (8) 

to update the rest of the domain. 

The outlet solution strategy is similar, 

employing in this case the Riemann 

Invariant associated to the first charac-

teristic field, written for a subcritical 

flow as 
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2 2
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(11) 

 

The solution in this case is simpler, 

since the flow level is imposed by the 

outlet condition and one needs only to 

use (11) to solve for a velocity distribu-

tion at the boundary. This condition is 

not required for supercritical flows 

crossing the outlet: there are no up-

stream travelling characteristic waves, 

all the information leaves the domain. 

Both permissive conditions assume that 

there is no friction on the bed, as to 

simplify the computation of the 

Riemann Invariants. A frictionless 

buffer zone is set around these regions, 

also useful since the inlet condition 
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assumes a horizontal free surface in the 

cross section. 

4. Results  
 

4.1. Simulation setup 

The domain consists of a 70 Km reach 

of the Tagus, Portugal, and 

approximately 10 Km of the Zêzere 

river, affluent of the Tagus. The 

considered area experiences regular 

floods and is monitored by 4 stations. 

The Tagus inlet is located at the 

Tramagal monitoring station cross 

section, with the outlet at the Ómnias 

station section. The Zêzere inlet is 

located at the Castelo-de-Bode station, 

and the fourth station, Almourol, is 

located 3 km downstream of the Tagus-

Zêzere confluence. The discretization 

consists of an anisotropic unstructured 

mesh, 15 m average side in the main 

channel and floodplains and a smooth 

gradient with respect to elevation from 

such areas, with the largest cell sizes of 

approximately 300 m. This resulted in 

over  61.3 10  mesh elements. 

The Digital Elevation Map, in Figure 1, 

was obtained in 2008 and 

complemented with the major levee 

structures, mostly concentrating in the 

left banks. It was subsequently sampled 

to a resolution of 30 m and applied to 

the computational mesh. The roughness 

map was built based on the soil 

classification by the CORINE Land 

Cover project, using average Strickler 

coefficient values proposed in the 

literature (Mattocks, 2006), resulting in 

Figure 2. The initial conditions 

represent the steady state for the annual 

median flow, 450 
3 1m s  for the Tagus 

and 150 
3 1m s  for the Zêzere, imposed at 

the respective inlet sections, together 

with the respective level imposed at the 

outlet. Figures 3 and 4 represent the 

initial state, achieved by allowing the 

simulation to run for an extended period 

of time, until the total mass in the 

domain reached a constant value, as 

well as the time step, indicating that 

every flux is effectively balanced and 

permanent. 

 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig. 1. View of the domain from downstream. 

Fig. 2. Spatial distribution of the coefficient of 

Mannning Strickler's equation. 

Fig. 3. Initial flow depth. 

Fig. 4. Initial velocity field. 
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Two flood events were modeled, with 

simulation times from December 29th 

to January 9th 2001 and from the 5th to 

the 13th of February. The inflow 

hydrographs are represented in Figure 

5. Satellite imagery is available for the 

5th of January, 9th and 11th of 

February, marked by the vertical lines 

in Figure 5, covering the whole flood 

extents in the considered reach. 

 

 
 

 
 

 

 

 

 
 

 

 

 

 

4.2. Results 

The results of the STAV2D model were 

compared with monitoring data and 

available satellite imagery. These re-

sults can however be considered blind 

tests, since no calibration effort was 

carried out.  

Approximately 3 km downstream of the 

Tagus-Zêzere confluence is the Al-

mourol monitoring station. The avail-

able data covers the considered event 

and several considerations can be 

drawn. Concerning mass conservation 

and wave celerities, the discharge in the 

Almourol section was computed and is 

compared in Figure 7 with the meas-

urements at the station for both epi-

sodes. 

The computed discharges correctly fol-

low the measured curves, describing in 

detail every oscillation imposed by the 

inlet boundary conditions and the ge-

ometry for both cases. For   45 10t s  the 

plot shows the fast rise of the discharge 

in order to cope with the difference be-

tween the permanent initial flow and the 

imposed conditions. 

 

 

 
 

 

 

 

 

Friction parameters have a large 

influence on flow depth, and even if no 

Fig. 5. Discharges at Tagus and Zêzere inlets; 

Top - December 29th to January 9th; Bottom 

- 5th to the 13th of February. 

Fig. 6. Level at the Tagus outlet; Top - De-

cember 29th to January 9th; Bottom - 5th to 

the 13th of February. 

Fig. 7. Measured and computed discharges at 

Almourol monitoring station. Left - December 

29th to January 9th; Right - 5th to the 13th of 

February 
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calibration is presented in this work, it 

is important to estimate the quality of 

the assumptions made concerning soil 

usage and its relation to rugosity 

coefficients. Figure 8 shows the 

measured and computed levels at 

Almourol station. 

 

 

 
 

 

 

 

 

The agreement of registered and com-

puted values is similar to that regarding 

the discharge, indicating that the fric-

tion coefficient estimate was generally 

adequate. The peak levels present a su-

perior deviation from the measured val-

ues. Regarding such deviation, the satel-

lite imagery in Figures 9 and 10 pre-

sents some insights. 

 

 
 

 

 

 

 
 

 
 

 

 

 

 

The simulated flood extent, although 

preserving the major structures of the 

observed flood, shows some 

discrepancies mainly at the left 

floodplain. The flood plains are used for 

agricultural purposes and the 

morphological impact of flood events is 

substantial in these areas. Small 

hydraulic works are also common, live 

levees and routing canals, carried out by 

the agricultural community. It is 

therefore hypothesized that most of the 

differences observed are a product of 

the differences in the actual terrain from 

2001 and the year of the DEM survey. 

The algorithm used to extract the flood 

extent from satellite data may also 

produce artifacts that may explain 

smaller differences in other regions. The 

fact that the flooded area is virtually 

identical for most of the right bank 

Fig. 8. Measured and computed water level at 

Almourol monitoring station. Left - December 

29th to January 9th; Right - 5th to the 13th of 

February 

Fig. 9. White contour - Satellite image; Blue 

surface - Computed wet domain; Red line - 

Almourol section. 5th January. 

Fig. 10. White contour - Satellite image; Blue 

surface - Computed wet domain; Red line - 

Almourol section. Top-8th February; Bottom - 

5th January. 
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supports these hypotheses. At peak 

level, the discrepancies should also 

produce the stronger deviations between 

simulation and satellite data. 

 

 

5. Conclusions 

 

Fluvial modeling introduces several 

problems for a simple discretization of 

the shallow-flow equations. Fast evolv-

ing fixed (inflow and outflow) and free 

(wetting and drying) boundaries, as well 

as complex channel bed configurations 

demand special attention if a stable and 

accurate solution is to be computed. A 

state-of-the-art general shallow water 

model, STAV2D, based on the Finite 

Volume Method, is used. It employs an 

extended and reviewed version of Roe's 

solver. Different approaches to the inte-

gral source terms for the bed slope were 

used, ensuring that the model is well-

balanced for hydrostatic and non-

hydrostatic solutions, even in the pres-

ence of irregular bed geometry. The 

model is compatible with spatially het-

erogeneous roughness parameters. 

Mesh refinement is also naturally incor-

porated by the method. 

STAV2D was used to model a flood in 

the Tagus river, Portugal. The effi-

ciency of the discretization, as well as 

the implementation, allow for the mod-

eling of a 70 km long reach, with an 

approximately 15 m resolution anisot-

ropic unstructured grid, with an average 

ratio of 1.35 computing time to simu-

lated time in an 8-core machine. This 

allows for detailed simulations of highly 

unsteady flows for extended periods of 

time in a normal desktop machine, with 

accessible programming tools.  

Satellite imagery was used to assess the 

results from the model. The results 

appear to be consistent and indicate that 

the presented conceptual models and 

discretization are suitable for the 

modeling of this type of flood 

simulations. The possible calibration 

relies only on the roughness 

coefficients, both value and spatial 

distribution wise. Apart from the 

uncertainties in the DEM and the 

roughness parameters, the model 

provided accurate results and 

encourages future developments as a 

research and engineering tool. 
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